翻訳と辞書
Words near each other
・ Mullo
・ Mullo (god)
・ Mullo (vampire)
・ Mulloch Hill Sandstone
・ Mullock
・ Mulloidichthys
・ Mullens
・ Mullens High School
・ Mullens Historic District
・ Mullens v Federal Commissioner of Taxation
・ Mullens, West Virginia
・ Mullensville, West Virginia
・ Muller
・ Muller & Phipps Pakistan
・ Muller (restaurant)
Muller automaton
・ Muller Dinda
・ Muller Frères
・ Muller glia
・ Muller House
・ Muller Ice Shelf
・ Muller Martini
・ Muller Santos da Silva
・ Muller v. Oregon
・ Muller's Department Store
・ Muller's method
・ Muller's morphs
・ Muller's ratchet
・ Mulleria, Kasaragod
・ Mulleripicus


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Muller automaton : ウィキペディア英語版
Muller automaton
In automata theory, a Muller automaton is a type of an ω-automaton.
The acceptance condition separates a Muller automaton from other ω-automata.
The Muller automata is defined using Muller acceptance condition, i.e. the set of all states visited infinitely often must be an element of the acceptance set. Both deterministic and non-deterministic Muller automata recognize the ω-regular languages. They are named after David E. Muller an American mathematician and computer scientist, who invented them in 1963.
==Formal definition==
Formally, a deterministic Muller-automaton is a tuple ''A'' = (''Q'',Σ,δ,''q''0,F) that consists of the following information:
* ''Q'' is a finite set. The elements of ''Q'' are called the ''states'' of ''Q''.
* Σ is a finite set called the ''alphabet'' of ''A''.
* δ: ''Q'' × Σ → ''Q'' is a function, called the ''transition function'' of ''A''.
* ''q''0 is an element of ''Q'', called the initial state.
* F is a set of sets of states. Formally, F ⊆ P(''Q'') where P(''Q'') is powerset of ''Q''. F defines the ''acceptance condition''. ''A'' accepts exactly those runs in which the set of infinitely often occurring states is an element of ''F''
In a non-deterministic Muller automaton, the transition function δ is replaced with a transition relation Δ that returns a set of states and initial state is ''q''0 is replaced by a set of initial states ''Q''0. Generally, Muller automaton refers to non-deterministic Muller automaton.
For more comprehensive formalism look at ω-automaton.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Muller automaton」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.